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Gene regulation depends on protein binding & DNA structure

Supercoiling is a key structural influence — a small change in topology can
lead to large conformational changes that affect protein binding & bring distal
sites closer together

Want to be able to predict topology of arbitrary genomes & understand
interplay between bound proteins and DNA topology

Experimental methods are valuable, but struggle to resolve fine detail in
dynamic processes; complementary molecular dynamics simulations can
provide atomic resolution
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Supercoiling is a deviation in the number of helical ; ;
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Even a small deviation in either direction can have

profound effects on structure & topology

Quantified by: @2% @)__720°

o Twist, Tw (number of coils around helix axis) | |

o Writhe, Wr (number of times helix axis crosses itself) (\ Tuist = -2, Withe = 0. (‘ Tuist = +2, Writhe = 0.
o  Linking number, Lk =Tw + Wr Q Q

o  Superhelical density, 0= ALk / N (for N bp) ’ i

For any two intertwined closed circles in 3D space % Twist =0, Writhe = 2. g Twist =0, Wiithe = +2.
(like a DNA minicircle), Lk is a time-invariant integer but

Tw & Wr may vary (g (_\9\3 o
Non-zero writhe leads to all sorts of shapes... 8)) C\@, Wist =0, Writhe = -4.

Plectonemic Toroidal
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Supercoiling in vivo

e Prokaryotic & eukaryotic genomes are persistently negatively supercoiled
e Metabolic processes including transcription introduce dynamic changes

e Supercoiling is implicated in gene regulation [1] & the function of an
epigenetic switch [2]
e Negatively supercoiled regions are associated with transcription start sites [3]

e Supercoiling-induced writhe can lead to interactions between proteins bound
to distal sites [4]

[1] Baranello L et al. 2012 Biochim. Biophys. Acta 1819 632—8 d0i:10.1016/3.bbagrm.2011.12.007
[2] Norregaard K et al. 2013 Proc. Natl. Acad. Sci. USA 110 17386—91 d0i:10.1073/pnas.1215907110
[3] Kim S H et al. 2017 preprint: DNA sequence encodes the position of DNA supercoils doi:10.1101/180414

[4] Noy A et al. 2017 Biophys. J. 112 523-31 d0i:10.1016/7.bp3.2016.12.034
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https://doi.org/10.1073/pnas.1215907110
https://doi.org/10.1101/180414
https://doi.org/10.1016/j.bpj.2016.12.034

Nucleoid-associated proteins

e NAPs often moderate DNA topology

e |HF & HU are DNA-bending NAPs with very similar
structures but little sequence similarity

e |HF binds specifically
(to the consensus sequence WATCARNNNNTTR)

e HU binds nonspecifically to existing distortions
(e.g. nicks, gaps, loops)

e Both bend DNA (HU 70-140°; IHF up to 160°)

e Implicated in DNA looping & gene regulation, CRISPR,
biofilms, & supercoiling

e Other interesting NAPs include:

o H-NS
o Fis

IHF structure [pdb:5i0n1]


https://www.rcsb.org/structure/5j0n

Molecular dynamics

e MD can provide dynamic, atomistic insight unavailable through experiment

Construct potential

based on the position & properties
of every unit (atom or residue) in
the system

Usually based on known
properties of different types of
atom (AMBER), but ab initio
methods are possible for small
systems

e Atomistic or coarse-grained?
e Implicit or explicit solvent?
e Trade-off between speed & accuracy

Apply force

to every unit over a very small time
step; adjust velocities to ensure
thermodynamic properties are
stable

(e.g. Langevin thermostat)

Repeat with new positions &
velocities

Integrate

at the position of every unit, in
order to determine the force it will
experience
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Ultimately want to predict plectoneme formation in arbitrary genomes

Aim to understand some predictors of plectoneme formation & how
supercoiling can be moderated to regulate gene expression

Thus, simulate DNA—protein binding to observe effect on DNA topology &
emergent interactions (protein—protein, DNA—protein, or DNA-DNA)

Make predictions testable by complementary single-molecule experiments

Minicircle topology feeds into synthetic biology & gene therapy; understanding
IHF links to biofilms & CRISPR



Simulations so far

® Minicircles (336 bp)
29<Lk<34
Implicit solvent

©) Bare
O +IHF
O +HU

e Linear DNA (41 bp) + IHF
Torsionally relaxed
Implicit & explicit solvent
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Tw & Wr vary with Lk roughly linearly, with 0 < gradient < 1, meaning ALk is partitioned between the two
Note that Lk = 31 is the most relaxed system — not Lk = 32
IHF & HU don’t seem to have much of an effect in most cases



Supercoiling enhances compaction
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Binding mode of IHF depends on DNA topology

Lk =29 Lk = 31

IHF binds highly
supercoiled minicircles
symmetrically...

...but binds only to the
AT-rich region in less
supercoiled systems



Explicit solvent




Explicit solvent
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Important test of validity of implicit solvent

IHF surface features many salt bridges
approach

(arginine/lysine — aspartic/glutamic acid)
These bridges are known to differ between
the DNA-bound and apo states

the states — but is this the same in implicit &

Observed a significant difference between
explicit solvent?

No conclusions yet — needs more work

Salt bridge



Interaction can be divided into distinct regions

Nonspecific binding site

Binds to AT-rich “right” region

Binds to other “left” region

No interaction with DNA in explicit solvent

T
Left I
Middle Emmm
50 - Right s |
Other

Number of H bonds involving protein region

e Differences are observed with changing Lk, but difficult
to quantify due to variation between replicas
e Try defining a larger “left” region - 30 1 2 3 34

Initial number of turns




Improve understanding of DNA bridging by IHF
Further explore & quantify IHF binding modes — is HU similar?
Explore interactions between multiple proteins bound to distal sites

Develop model (based on MD + bioinformatics + polymers) to predict
plectoneme formation “hotspots”
Converge with experiment (single-molecule, tweezers, AFM...)

o Scale up to approach experimental lengths (coarse-grained)

o Make predictions of plectoneme formation, protein positions, & other experimentally testable
properties



